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Critical behaviour of a (1 + 1) dimensional Potts model with 
ferromagnetic and antiferromagnetic interactions 
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Abstract. We study the one-dimensional quantum Hamiltonian version of a two- 
dimensional three-state Potts model on a square lattice which has ferromagnetic interactions 
in the x direction and antiferromagnetic interactions in the y direction in the limit of strong 
coupling in the x direction. We find a massless low-temperature behaviour. The transition 
point which has an essential singularity is located at a different point as previously 
conjectured. 

1. Introduction 

The purely antiferromagnetic two-dimensional q-state Potts model (Wu 1982) has 
been of great interest in the past because of its rich features: a ground state with a 
complicated degeneracy and an essential singularity for q = 3 (Nightingale and Schick 
1982) and on the other hand, an exactly known transition line for q S 3 (Baxter 1982). 

A mixed Potts model on a square lattice in which only the couplings in the y 
direction are antiferromagnetic while the couplings in the x direction are ferromagnetic 
has been less studied, although it might be equally rich as the purely antiferromagnetic 
model and less difficult to handle numerically. The transition line is not exactly known 
but a conjecture was made by Kinzel et ul (1981): 

( l + e J x ) ( l - e ’ y ) = q ,  (1) 

where J ,  > 0, Jy  < 0 are the dimensionless coupling constants. On the other hand, 
contrary to the purely antiferromagnetic case, the degeneracy of the ground state can 
easily be calculated. Numerically a Migdal-Kadanoff renormalisation group and a 
Monte Carlo simulation for q = 3 have been performed on the mixed Potts model 
(Kinzel et u1 1981), the first supporting the conjecture (1) and the second suggesting 
an unconventional transition. 

In order to clarify the situation of the mixed Potts model, we will investigate in 
this paper the case q = 3 by solving the one-dimensional quantum Hamiltonian version 
of the model, i.e. in the limit J,+O, J, +a with Jy eJx fixed and extrapolating the 
results with finite size scaling arguments (Hamer and Barber 1980, Herrmann 1981). 

5 Financially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica 
de Argentina. 
I/ Laboratoire associt au CNRS. 

0305-4470/84/030657 + 09$02.25 @ 1984 The Institute of Physics 657 



658 H J Hermann and H 0 Martin 

This method is related to the phenomenological renormalisation (Nightingale 1982, 
Sneddon and Stinchcombe 1979) and has been successful because of its numerical 
accuracy. Furthermore the quantum Hamiltonian is in itself interesting as a model. 

In 9 2 we describe the model and explain the method, § 3 is devoted to the results 
and 9 4 summarises and concludes. 

2. Model and method 

We begin by considering the classical two-dimensional anisotropic q-state Potts model 
on a square lattice: 

-PH = c ( J Y & , ,  + J , S , ,  1, ITI = 1 , .  . . ,q ,  ( 2 )  
(1.1) 

with general, i.e. ferromagnetic or antiferromagnetic, couplings J ,  and J,,. To go over 
to the one-dimensional quantum version of (2) we choose the x direction as 'time' 
direction (Fradkin and Susskind 1978, Sneddon and Stinchcombe 1979) and have to 
describe the transfer operator in the x direction in the form of an exponential 

a exp[(K,/q)A] 
/ = 1  

where 

(3) 

and 1 is the unity operator. One quickly sees by looking at the eigenvalues of T, that 
this is only possible if J,>O. So we have to choose our time direction to have the 
ferromagnetic coupling. This also explains why the purely antiferromagnetic Potts 
model cannot be studied in a quantum version. From (3) one gets 

¶ - I  

1 1 = 1  
A = c  t f  

and 

eKx =[ I  + ( q  - l)e-'x]/( 1 -epJ.). 

(4) 

The complete transfer matrix T is composed of T, and the contribution of the 
couplings within the y direction: 

To: exp(J,B) exp[(K,/q)AI, B = c 47c,q->. (6) 
I 

Thus no condition is imposed on the Jy  and we choose it to be the antiferromagnetic 
coupling of the mixed Potts model. 

The quantum Hamiltonian 3"f is obtained by writing T as an exponential 

Ta exp[ - ( J y /  4 1 3"fI (7) 
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which is done by use of the Baker-Hausdorff formula 

exp(JyB) exp[ - (A/q)Jfil= exdJY[B - (A/q)AI) exp[(A/2q)J; [B, AI + O(J:  >I (8) 

in the limit of Jy  + 0 with A = -Kx /  J y  fixed. The second factor of the right-hand side 
of (8)  contains many operators composed of commutators which because of their 
higher powers in Jy can usually be neglected unless they are not irrelevant, i.e. if they 
destroy the degeneracy of the ground state. This is if one deals with a highly degenerate 
ground state a delicate question. In our case one can see that none of the commutators 
appearing in (8) is relevant and thus the procedure is correct. But the easiest way to 
convince oneself of the equivalence of the one-dimensional quantum Hamiltonian 

%= AA - qB (9) 

that one gets from (7) and the two-dimensional classical model (2) is counting for 
both cases the degeneracy of the ground state. For a strip of width N in (2) and for 
a chain of N sites in (9) the degeneracy is in both cases q(q-l)N-’. The quantum 
Hamiltonian (9) differs from the quantum Hamiltonian of the common ferromagnetic 
Potts model (Herrmann 1981) only by a relative sign between the operators A and B. 

It is numerically more convenient to work in another basis (S6lyom and Pfeuty 
1981), and then the Hamiltonian becomes modulo a constant 

with 

In the limit Jy + O  with fixed A equation ( 5 )  goes over to 

K, = q e-’X 

and thus the conjecture (1) of Kinzel et a1 (1981) for the critical point becomes 

A,= 1 (11) 

for the quantum models (9) or (10). 
It is known (Fradkin and Susskind 1978, Kogut 1979) that the ground state energy 

density and the energy gap of the one-dimensional quantum model are proportional 
to the free energy density and the reciprocal correlation length of the two-dimensional 
classical model respectively. So it suffices to calculate the two lowest-lying energy 
levels Eo and El  of the quantum Hamiltonian (10) to get all the interesting information 
on the classical model (2). Our approach consists in calculating Eo and El exactly on 
a chain of N sites. We use open chains because periodic boundary conditions would 
change the ground state degeneracy and introduce a strong even-odd imparity. 
Unfortunately finite size effects are stronger in the case of open chains (Fisher 1971). 

The numerical task thus consists in obtaining the two largest eigenvalues of q N  X q N  
matrices. This is done by an iterative algorithm; for technical details see Herrmann 
(1981). We only treat the case q = 3 and go up to N =  8. 
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3. Results 

The gap for a chain of N sites 

G N  = Eo - El 

is shown against A in figure 1. If (11) defines the critical point as conjectured (Kinzel 
et a1 1981) this gap should go to zero at A = 1. Figure 1, however, suggests that the 
gap vanishes at much smaller values of A. 

GN 

2 

0 1 .o 1 .5 
x 

Figure 1. Gap plotted against coupling parameter A for different chain lengths N. A ,  
N = 2; 0, N = 3; a, N =4; 0, N = 5, e, N = 6 ;  A, N = 7 .  

Next we will analyse the gap using finite size scaling arguments (Jullien and Pfeuty 
1981): 

GN -N-’f(N””(A - A c ) ) .  (13) 
f is a scaling function and v the exponent of the correlation length of the classical 
model. The ‘dynamical’ exponent z is the ratio of v,-the exponent of the correlation 
length in the ‘time’ direction-and v. As our Hamiltonian is equivalent to a classical 
model, z must be one because G-’ is proportional to the correlation length. Also 
figure 2, where GN is double-logarithmically plotted against N, shows that the straight 
lines have slope z = 1 (compare with the guides to the eye (broken lines) of slope 
one). From (13) one expects in figure 2 a straight line only at the critical point. This 
excludes a A c  larger than 0.3, in support of our conclusions from figure 1. But for A, 
smaller than 0.3 all the curves can be asymptocally straight for large N which indicates 
a line of critical points. Looking at NG, against A in figure 3 (Roomany and Wyld 
1980) one also does not find one fixed point for different chain lengths but a whole 
line of pseudo-fixed points for small A and a trivial fixed point at A = 0. Figures 2 and 
3 thus exclude the existence of one single isolated critical point at a finite A and suggest 
a special region at small A. 

Next we examine the critical behaviour in the region of small A. The exponent v 
of the classical correlation length is calculated from (13) by 

GN (dG,/dA)-’ -N-””. (14) 
Note that (14) does not depend on z. 
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Figure 2. Double-logarithmical plot of the gap G, against chain length N for different 
values of A. The left scale of the GN axis is for A 3 0.1, the right scale for A s 0.003. 
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A 

Figure 3. NGN plotted against A for different chain lengths N. A, N = 2; 0, N = 3; 
W, N=4;  0, N = 5 ;  0,  N = 6 ;  A, N = 7 .  

In figure 4 we show the double-logarithmical plot of GN ( d G N / d A ) - I  against N 
for different values of A. The slope of the curves for A < 0.05 clearly yields an infinite 
v but also for A < 0.2 one might get Y + CO for large N. We conclude that for small A 
we have a diverging correlation length, i.e. a line of critical points. This suggests a 
massless phase with an essential singularity at a A,<0.2 (Jullien and Pfeuty 1981). 

Figure 5 shows the 'specific heat' 

C = -d2 so/dA2 (15) 
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Figure 4. Double-logarithmical plot of G, (dG,/aA)-' against N for different values of A. 

Figure 5. Specific heat plotted against A for different chain lengths N. A ,  N = 2; C, N = 3; 
A, N = 4 ;  0, N = 5 ;  0 ,  N = h .  

where E ~ =  Eo/N is the ground state energy density. Clearly the specific heat does 
not diverge in the critical region of small A. This is also typical for a massless phase. 

In summary we conclude from figures 4 and 5 that there is a region of small A 
showing massless behaviour and that the transition at A, to this region has an essential 
singularity. We thus agree with the statement made by Kinzel et a1 (1981) that the 
transition is of 'unconventional type'. It is, however, difficult to determine the extent 
of the massless region. 

A more precise determination of the transition point is possible by looking at the 
function 

@ ( A )  = d h / d a  (16) 
(Nightingale and Schick 1982), where a is the rescaling factor between two chains of 
different length, explicitly: 

da = -dN/ N. (17) 



Critical behaviour of a mixed quantum Potts model 663 

Using the usual renormalisation equation for chains of sizes N and N' (see e.g. Derrida 
and de Seze 1982) and (13) (with z = 1) yields 

NG ( A )  = N' GN' ( A  '). (18) 

From (16)-( 18) one obtains 

and the numerical approximation of the derivatives for a pair of chains of N and N + 1 
sites yields 

The function P vanishes at the fixed point of (18). In figure 6 we show the functions 
/3N,N+l for different pairs N and N +  1. The conclusions we drew from figures 4 and 
5 about the critical behaviour of the model imply that in the limit N + 03 the curves 
/3N,N+1 will tend to a function which is zero for A <A, .  Figure 6 shows that such an 
asymptotic behaviour is quite plausible. The points h,(N, N + 1) at which PN,N+l crosses 
the zero axis will then tend towards A,. In the inset we plotted AJN, N+ 1) against 
N-'. There is clearly a slight even-odd imparity in the A,(N, N+1).  To get rid of 
this we also calculated AJN, N + 2 )  and plotted it in the inset of figure 6. A,(N, N+ 1) 
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Figure 6. Function f i , v , ~ k + l  plotted against A for different pairs N, Nf 1 .  (N, N +  1 = 2 ,  3 
( A ) ;  3 , 4  (0); 4 , 5  (A); 5,6 (0); 6, 7 (O) . )  The inset shows Ac(N,N') plotted against 
(NI- l ) - '  for N' = N+ 1 (full circles) and N' = N+2 (open circles). 
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and A,(N, N + 2 )  can both be extrapolated to N + 00 and yield A, < 0.13. It is, however, 
not possible to exclude from this extrapolation A, = 0. The difficulties in the extrapola- 
tion arise from the fact that the finite size effects are very strong due to the free ends 
of the finite chains. 

In the infinite system we have at A, the essential singularity 

G - exp[-a ( A  - A,)-"] (21) 

P ( A ) - ( W U ) - ' ( A  - ~ , ) ' = + l ,  (22) 

and so the function p behaves as 

In figure 7 we plot /3N,N+1 double logarithmically against A -A,* for different tentative 
values of A,*. For large N, equation (22) predicts a straight line of slope a+ 1 at 
A,* = A,. Unfortunately for the values of N that we consider the curves do still change 
considerably with N as shown in figure 7. For N = 7 and A,* = 0.2 one has nearly a 
straight line but for larger N the curve for A,* =0.2 will not be straight any more. It 
is not easy to say for which A,* the curve will become a straight line in the limit N + CO. 

But clearly an upper limit for A, is 0.2 in agreement with our previous findings. Because 
of the uncertainty in A, and the strong finite size effects the exponent a cannot be 
reliably extracted. To estimate an upper limit for a we look at the slope of the curve 
for A,* = O  in the region where finite size effects are strong. This gives us a<0.9 .  
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Figure 7. Function P N , N + ~  double-logarithmically plotted against A - A T  for different A,* 
and different chain lengths N. (N, N+ 1) = 2 ,3  (A) ;  3 ,4  (U); 4 , 5  (W); 5 , 6  (0); 6 , 7  (O) . )  

4. Conclusion 

We find that the two-dimensional three-state Potts model with ferromagnetic interac- 
tions in one direction and antiferromagnetic interactions in the other direction has a 
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massless low-temperature behaviour in the anisotropic limit of strong ferromagnetic 
interaction, and using universality this should be valid also in the isotropic case. The 
transition point has an essential singularity with an exponent U less than 0.9. As the 
coupling A of the quantum Hamiltonian cannot be directly given in terms of the 
temperature, it is not possible to determine the transition temperature of the two- 
dimensional classical model with this method. But because of the strong finite size 
effects it cannot even be completely excluded that the massless region shrinks down 
to zero temperature; this is, however, not very likely if one considers figures 2, 3 and 4. 

We note that our findings agree with those of other authors. Howes et a1 (1983) 
have considered the quantum version of a more general model, finding with series 
expansions A, = 0.10 i ::A: assuming U = $ for the special case of our model Ostlund 
(1981) and Yeomans and Selke (1982) studied the chiral clock model which for A = 1.5 
is our model; they also find the massless phase. 
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